
SmartMLVs: LLM-enabled Multiple Linked Views Generation
for Interactive Visualization

Tian Qiu*

Fudan University
Fen Wang

Henan Institute of Advanced Technology,
Zhengzhou University

Shaohua Huang
Tongji University

Meng Guo
Fudan University

Yuheng Zhao
Fudan University

Jincheng Li
Beijing Normal University

Siming Chen†

Fudan University

Figure 1: A usage scenario demonstrates how SmartMLVs operates: (a) The user begins by proposing the task, ”What factors
influence house pricing?” The system, with user involvement, decomposes this task. (b) It then automatically generates linked
views. (c) The user interacts with these views and gains insights with the support of reference notes. (d) Finally, the user poses new
questions, and the system provides responsive answers.

ABSTRACT

Automating the generation of multiple linked view visualization is
imperative for improving data analysis efficiency. Large Language
Models (LLMs) offer substantial potential for enabling this automa-
tion, yet they encounter notable challenges in understanding complex
queries and producing relevant interactive visualizations. To tackle
these challenges, we introduce SmartMLVs, a system designed to
harness LLMs for automatic interactive multiple linked views gener-
ation with human guidance. First, we analyze the challenges LLMs
may encounter when designing visualizations in place of experts.
To address these challenges, we gather the essential domain knowl-
edge required for visual analysis process and propose a framework
consisting of decomposition, visualization and linking. The decom-

*e-mail: tqiu24@m.fudan.edu.cn
†e-mail: simingchen@fudan.edu.cn, corresponding author

position process applies a human-AI interaction method to clarify
user requirements. For each decomposed question, the generation
process handles chart type selection, data processing and visualiza-
tion generation. Finally, the linking process adds interactions for
views and provides users with data insights. For better human-AI
collaboration, we design a system for data exploration. Our system
applies the entire framework, supporting users’ interactive explo-
ration with multiple linked views, and can iteratively generate linked
views based on user feedback. We examine the effectiveness of our
method through usage scenarios and evaluations.

Index Terms: Large Language Model, Visualization Generation

1 INTRODUCTION

Data visualization and visual analytics stand as significant instru-
ments in presenting complex data clearly and supporting informed
decision-making [31]. The process of manually designing and im-
plementing visualizations is time consuming and highly specialized,
which requires experts to possess a deep understanding of both data
analysis and visualization techniques. The emergence of automated
visualization generation methods efficiently solves these limitations.

The natural language interface (NLI) methodology surpasses conven-
tional visualization tools in terms of convenience and efficiency [39].
It empowers them to craft visualizations without resorting to tradi-
tional programming tools, thereby simplifying the data exploration
and mining process.

Traditional machine learning algorithms have employed rule-
based [32] and constraint-based [37] approaches to generate visu-
alization charts. Recently, NLI algorithms based on LLMs have
also made significant progress, outperforming traditional models in
various aspects. For instance, LIDA [13] summarizes data using
prompting and standardizes code generation formats, ensuring the
correctness of visualization generation. ChartGPT [42] constructs
a visualization generation dataset based on nvbench [27] and fine-
tunes LLMs to accomplish NLI tasks. However, all these studies
only generate non-interactive views. Users can only passively re-
ceive limited information, which reduces flexibility. The absence
of filtering and screening functionality prevents the system from
customizing the analysis to meet user-specific needs.

Interactive linked views enable users to explore multiple dimen-
sions of data for a more comprehensive understanding, while inter-
actions and view linkage enhance the exploration experience and
discover potential insights. Therefore, our research aims to automate
the process of interactive linked views generation. The research
mainly faces three key challenges. Firstly, tasks proposed by users
can be complex and ambiguous, leading to challenges in under-
standing them. Secondly, It is challenging to select targeted graphs
tailored to diverse tasks, rather than being restricted to those com-
monly used in NLI (e.g. bar, line, pie and scatter). Lastly, Generating
effective interactions and linked views that help users gain a deeper
understanding of the data is challenging.

To tackle these challenges, we introduce SmartMLVs, a task-
driven automatic visualization linked views generation system. Mul-
tiple linked views (MLVs) refer to several visual representations of
a dataset linking by user interactions [33]. We utilize the LLMs
in our system to interpret intent and generate code through prompt
engineering. Specifically, we propose a method, which uses re-
trieval augmented generation (RAG) to inject visualization domain
knowledge into LLMs, to support the generation of interactive vi-
sualization with multiple linked views. We first analyze the tasks
and challenges involved in the automatic generation of linked views,
and obtain the domain knowledge of visual analysis through inves-
tigation. Based on the challenges and knowledge, we propose a
framework consisting of three key steps: decomposition, generation,
and linking. The decomposition process is responsible for breaking
down user-proposed tasks into visualization questions. The gener-
ation process manages chart type selection, data processing, and
visualization creation, aiming to accurately produce diverse visual-
izations for each specific question. The linking process incorporates
interactive linking between charts and generates chart descriptions,
working collaboratively with users to uncover insights hidden within
the data. Also, an interface is developed to support the collaboration
of users and LLMs.

The main contributions of this study are reflected in three aspects:

• To the best of our knowledge, we are among the first to attempt
automating the generation of interactive visualization with
multiple linked views, reducing the cost of visual analytics and
improving data analysis efficiency.

• We design a system to apply our framework, which supports
users to tailor linked views according to their requirements and
explore data in a code-free environment.

• We validate the effectiveness of our approach through a usage
scenario and evaluation experiments, showcasing the effective-
ness and generalizability of our framework.

2 RELATED WORK

We review existing literature regarding NLI, task decomposition and
LLMs based visualization generation.

2.1 Natural Language Interface

The integration of NLI with data visualization stands as one of the
current research frontiers. Shen et al.’s comprehensive survey [39]
systematically reviewed the integration of natural language with data
visualization, pointing out directions for future research and practice.
The research framework proposed by Arjun et al. [40]discussed the
challenges and strategies in evaluating data visualization natural
language interfaces. On the tooling front, Talk2Data [18] employed
Bert to decompose tasks, automating the generation of multiple
views to answer high-level questions proposed by users. Arpit
et al. developed the NL4DV [32] toolkit, which generates data
visualizations from natural language queries, providing developers
with convenient development tools. The ADVISor [24] proposed by
Liu et al. utilized pre-trained language models and deep learning
techniques to achieve intelligent visualization and annotation of
tabular data.

However, all these approaches employed a template based method
to generate visualization, which lacks flexibility.

2.2 Large Language Model for Task Decomposition

Complex tasks typically demand a structured process for examining
and addressing challenges. Task decomposition is a common way to
help LLMs understand user needs and simplify problems.

Recent studies have proposed two strategies for task decompo-
sition. Some studies decomposed the problem in processing order,
which firstly separated the problem into several sub-problems and
then solved each sub-problem in a specific order. For example,
Least-to-Most prompting [54] broke an elaborate problem into many
sub-problems and used the response to the previous sub-problem
as the input to the next one. Creswell et al. proposed Selection-
Interface [11], which divided each step of reasoning into two parts:
selection and inference. This approach alternated between these
two stages, creating a sequence of understandable and flexible rea-
soning steps that culminate in the ultimate conclusion. Plan-and-
Solve prompting [48] formulated an initial plan at first and then
decomposed the task into more manageable sub-problems. Some
studies deconstructed complex problems by task types. Program
of Thoughts Prompting [9]utilized pre-trained LLMs to decouple
computations from reasoning tasks. ChartGPT also used this method
to simplify the task.

However, these approaches do not perform task decomposition
from a visualization perspective, making it challenging to derive
multiple linked views from the resulting sub-problems. In our frame-
work, we propose task decomposition strategies based on prompt
engineering and self-consistency, enabling large models to generate
more effective visualizations.

2.3 Large Language Models for Visualization Generation

Recently, large language models(LLMs), including GPT-4 [1], flan-
T5 [10], LLAMA [43] and so on, perform well in understanding
and generating natural language. Experts and scholars have applied
LLMs in many fields and existing research results can prove that
LLMs perform well in these areas, such as code generation [17],
story generation [38] and solving problems [52].

Specifically, recent studies have applied LLMs to visualization
generation. Some studies focus on prompting LLMs to generate
visualization code. For instance, CHAT2VIS [28] generated Mat-
plotlib [8] code in Python by prompting LLMs with column types
and natural language guidance. Besides, LIDA [13] split the process
into 4 steps and used richer and more sophisticated prompts to let
LLMs generate Python code. Data Formulator [46] allowed users to

Figure 2: SmartMLVs framework: A framework including 3 stages is proposed based on the task, challenges and knowledge. In the decomposition
module, LLMs separate a task into visualization questions. The generation process generates a chart for each question in three steps. The linking
process adds interaction to charts and provides reference notes. Users gain data insights through interactive exploration and reference notes
reading.

handle complex data transformation with the help of LLMs. Narra-
tive Player [38] generated data stories based on data-rich documents
and data. LEVA [53] used LLMs to enhance users’ visual analytics
workflow at multiple stages. Li et al. [22] comprehensively evaluated
visualization generation models and proposed few-shot and one-shot
methods to improve accuracy. Some studies focus on fine-tuning
LLMs to generate visualization encodings. Chartgpt [42] fine-tuned
open-source LLMs and adopted the chain-of-thought idea to split
the task into 6 processes. Other studies focus on generating visual-
ization and text in specific fields. For example, Data-Copilot [51]
can automatically collect data from the economic field and generate
visualizations according to users’ queries. Tailor Mind [16] guided
the application of fine-tuned LLMs to enhance visual interactions
for domain-specific tasks.

However, existing works only generate a single visualization
chart, which has a gap with the visualization requirements for mul-
tiple views. Therefore, we propose a framework that can generate
linked views, aimed at bridging the gap in multi view visualization
and assisting users in analyzing data more effectively and efficiently.

3 PROBLEM FORMULATION

The goal of our system is to assist users in understanding, analyzing,
and gaining insights from data by automatically generating linked
views. We analyze the tasks that need to be accomplished and the
challenges that may arise during the visual analysis process of LLMs.
Then we gather the necessary knowledge for the generation process.
Finally, we propose our framework based on the tasks, challenges
and knowledge.

3.1 Tasks and Challenges

Through a review of numerous visual analytics surveys [36, 49], we
have identified five common analysis steps. Visualization experts
typically begin with analyzing visualization tasks, followed by data

processing and visualization design. Next, users are invited to ex-
plore the data through the system, and the process concludes with
the extraction of insights.

We envision how to use LLMs to replace visualization experts for
these tasks and analyze the possible challenges. We will focus on
addressing these issues when designing our framework.

Task: Visualization experts often clarify user requirements and
system guidelines through user research and other related methods.
We expect LLMs to decompose a complex task into multiple require-
ments by leveraging the data and tasks provided by the user, along
with the background knowledge of the task’s domain, to infer the
user’s intention. However, due to the lack of preliminary research
and inspection, the task decomposition performed by large models
may not align with the user’s intent. Thus, addressing potential bi-
ases in how LLMs understand tasks presents a major challenge (C1).
It can be a possible solution to let users make the final decision.

Data: When working with raw data, data analysts first need
to develop a general understanding of the data, then perform data
cleaning, and finally customize a model for data mining to prepare
the data for designing visual charts [21, 26]. Given that the volume
of data may be too large to provide directly to LLMs via prompts
or assistants, we need to employ an appropriate data description
method to convey as much relevant knowledge of the data to the
model as possible in order to prevent hallucination (C2). As a
result, significant features of the dataset should be extracted [47]. In
addition, LLMs require the design of suitable algorithms and models
to effectively mine the data (C3). Considering the complexity of the
algorithm, a chain-of-thought method can be employed [50].

Visualization: Visual analytics systems often employ a variety
of chart types to visually and aesthetically present data stories [45].
In our work, LLMs are employed to automatically select chart types.
However, LLMs tend to have bias in chart type selection and often
favour a limited range of charts. It remains challenging to get LLMs
to recommend the most suitable chart types (C4).

Exploration: In the process of exploring a visual analytics sys-
tem, users primarily analyze data through interaction, drawing con-
clusions by linking insights between different graphs. We aim for
LLMs to automatically add interactions between graphs, facilitating
seamless linking between them. However, it is hard for LLMs to
understand the contextual linking between visualizations, making
the process challenging (C5). How to instruct users to take full
advantage of the interactions is also a big problem (C6), as a result
of which, suitable guidance should be provided [23].

Insights: The ultimate goal of visual analytics systems is to assist
users in gaining data insights and crafting data stories. We hope that
the knowledge augmentation provided by LLMs will enable users to
identify missing elements overlooked during the exploration process,
leading to more comprehensive analysis results.

3.2 Requirements
Based on the above analysis, we formulate the following require-
ments:

R1 Proper data processing methods (C2, C3). Proper data prepa-
ration is the foundation of the visualization effort. In order to reduce
the burden of LLMs, we need to design appropriate methods for data
input, algorithm design, and code implementation.

R2 Visualization knowledge integration (C4, C5). In order to
enable LLMs to generate linked views from the perspective of visual
analysis experts, external knowledge should be integrated hoping
that the system can complete the work of generating linked views
from a more professional perspective.

R3 Involve users for pivotal points (C1, C6). Allowing users to
participate in decision-making at key nodes can not only improve
users’ satisfaction with the results, but also improve users’ sense
of participation. Compared to having the user make all decisions
directly, this human-machine collaboration reduces the user’s meta
cognition while improving the performance of our system.

3.3 External Knowledge
We have prepared external knowledge for LLMs from four aspects,
including principles of chart type selection, basic information about
charts, definitions and functions of interactions, as well as authorita-
tive code examples for implementing interactions. We use RAG to
integrate these knowledge into LLMs (R2).

Our primary goal is to understand how visualization experts select
chart types when designing visualization systems. To this end, we
conduct a quantitative analysis of visual analytics papers, examining
how visualization charts are designed within their systems. Also, we
refer to some visual analytics survey [12] to validate our conclu-
sions. When selecting papers, we utilized the literature compiled in
the VisPub dataset [19]. We screened all papers published at IEEE
VIS conference over the past five years (altogether 641 papers). We
identified those that focused on designing visual analysis systems
and found 115 papers. Among these papers, we focused on work
for application and removed those related to 3D visualization, sci-
entific visualization, and deep learning interpretability. In total, we
reviewed 52 papers, which are the latest work in their domain and
represent a variety of data types, including spatio-temporal, network,
high-dimensional, text and time-series. Our findings are presented
in Figure 3. In the figure, we display the charts with the top 12
frequency.

The results show that the charts used in visual analytics sys-
tems are highly diverse, with charts such as force-directed charts,
heatmaps, and parallel coordinates charts being used frequently,
which LLMs may not typically generate. Additionally, the choice of
chart types is strongly related to the data type. Also, some charts,
like violin charts, are sometimes used in the visual analytics system
to improve attractiveness. Our quantitative analysis will be inte-
grated into LLMs to inform their decision-making when selecting
chart types (K1).

Figure 3: A quantitative analysis of the chart types used in visual
analytics papers, showing the diversity of chart types and the strong
relation between data types and chart selection strategies.

However, the tasks proposed by users may not always align with
those typically addressed by visual analytics systems. We aim for
LLMs to be generalizable in chart recommendation. LLMs are ex-
pected to not only understand which chart to suggest for a particular
task, but also know why that chart is an effective choice. Therefore,
we aim to equip LLMs with a deeper understanding of visualization
charts. To ensure the reliability of this knowledge, we have compiled
definitions, along with the strengths and weaknesses of various chart
types, from authoritative sources such as reputable websites [41]
and classic visualization textbooks [3, 14] (K2). During the chart
selection process, we align the decomposed questions with these
references to help LLMs make the most suitable choices.

With respect to interactions in visual analytics systems, we an-
alyze the use of various types of interactions in visual analytics
papers. The interactions mentioned in the papers we review primar-
ily include selection, filtering, hovering, zooming, arrangement, and
annotation. Among these, selection and filtering emphasize linking
between charts, while hovering, zooming, and arrangement focus on
interactions within a single chart. Annotation, on the other hand, is
mainly used for recording insights. We gather the definitions and
functions of these interactions from visual analytics survey (K3)
[23].

Our focus is primarily on exploratory interactions, which are
selection, filtering, hovering, zooming and arrangement. To create
interactions, we download interactive visualization code examples
from Altair [35, 44]. On one hand, these examples can help teach
LLMs how to incorporate interactions into Altair code. On the other
hand, they can enhance the LLMs’ knowledge of the best interaction
methods for each chart type (K4).

4 SMARTMLVS

In this section, we introduce how our system is implemented and
show how users interact with the system.

4.1 Framework

Based on the identified challenges and design requirements, we pro-
pose SmartMLVs. Our framework consists of three stages: Decom-
position, Generation, and Linking. The user will upload the dataset
and propose the questions in the beginning (Figure 2a), followed by
LLMs generate interactive multiple linked views automatically, and
finally users can get insights by interaction with linked views with
the guidance of reference notes (Figure 2e).

Decomposition: To address the tasks and datasets provided by
users, we aim to generate data descriptions that summarize the
dataset (Figure 2-b1) and decompose the task into a series of ques-
tions. We instruct LLMs to first identify the domain of the task, then
extract the relevant data from the dataset, and finally generate a list
of decomposed questions needed to complete the task (Figure 2-b2).

Figure 4: An overview of our interface: (a) A control panel to start a new chat (a1) or refer to a specific history (a2). (b) Data preview window to
help users get familiar with data. (c) The area users upload files (c5),propose tasks (c4), select questions (c1), view and interact with charts (c2),
and understand reference notes (c3). (d) A modification panel to help users modify charts.

Additionally, a human-AI interaction method is employed to refine
and polish these questions (R3).

Generation: For each question decomposed in the previous step,
we aim to generate a suitable visualization chart. This process is
completed from three perspectives: chart type, data, and visualiza-
tion.

When selecting chart types, we first instruct LLMs to learn both
the knowledge about visualization charts (K2) and the decision-
making processes in real scenarios (K1) using RAG. Next, LLMs
are asked to assign a score to each chart type, evaluating how suit-
able each one is for addressing the question. Ultimately, the chart
type with the highest score is recommended (Figure 2-c1). When
processing data, LLMs are instructed to employ a chain of thought
method to solve the problem (R1). They may first generate a data
processing plan including data cleaning and algorithm designing,
and then generate the code according to the plan (Figure 2-c2). When
generating visualizations, we first generate the visualization code,
and our system automatically executes the code to display the charts.
(Figure 2-c3). Finally, we generate multiple views according to the
number of questions.

Linking: Our goal is to add interactions across multiple views
and generate reference notes to describe the charts and insights,
providing users with space for exploration (Figure 2d).

When achieving linking between charts, we first instruct LLMs to
generate an interaction plan for these charts, which aims to choose
which chart users interact with and how users interact with them,
and which charts to respond to the interactions. In this step, we give
LLMs the knowledge about the design principle of each interaction
(K3,K4). Then, we instruct LLMs to add interactions based on the
examples downloaded from Altair (K4). By executing the modified
code, we generate multiple linked views based on proposed tasks.
Additionally, we provide users with reference notes to assist them in
exploring the linked views and gaining insights (R3).

In conclusion, SmartMLVs begin by receiving the task and dataset,
then employ a human-computer interaction method to generate mul-
tiple linked views. Users are then guided to interact with the system
through reference notes, which provide insights and prompt further
exploration ideas.

4.2 Decomposition
The decomposition process starts with analyzing the data and aims
to recommend a variety of questions to assist users in understanding
various aspects of the task.

Initially, users upload their data and propose a task. We sum-
marize and convert the data into a structured format, named data
description. We extract the structure of the data table, along with
detailed information for each column (C2).

The decomposition process then proceeds through three steps.
First, LLMs are instructed to identify the domain of the task and
data, then play the role of the domain expert. In this way, we aim
to improve the profession of the result. Second, LLMs are tasked
with selecting all columns related to the user’s task, ensuring the
completeness and integrity of the task decomposition. Third, LLMs
decompose the task into specific questions based on the correlation
between variables and the relationship between independent and
target variables. In this step, we instruct LLMs to use the raw
column names directly in the questions, avoiding misunderstanding
in subsequent steps (C1). For example, for questions containing
ambiguous expressions ”What is the most popular product?”, we
automatically change the word ’popular’ with a specific column
name ’sale volume’ and modify the question into ”Which product
has the highest sale volume?” to avoid hallucination. We repeat the
third steps until all the related columns are considered.

Then, we apply a self-consistency mechanism for validation. Self-
consistency is a prompt engineering method that involves instructing
LLMs to generate multiple responses and then selecting the most
frequently occurring answer. This approach helps reduce hallucina-
tions and improves the overall quality of the generated answers. Any
questions not relevant to the task, or those that cannot be addressed
using visualization charts, are excluded. Additionally, questions
that do not meet the specified requirements, such as those contain-
ing ambiguous expressions, are regenerated to ensure accuracy and
clarity.

Finally, users are involved in selection or modification. Users
may select various questions which meet their needs. If users are
dissatisfied with the decomposition results, they may tell LLMs how
to modify the questions or ask LLMs to decompose again.

4.3 Generation
For each question decomposed in the previous process, our goal is to
generate a single visualization chart that ensures both accuracy and
diversity. To achieve this, we must address model correctness (C3),
ensure the diversity of charts (C4), and guarantee the executability
of the visualization code. We tackle these challenges using the
following methods.

Chart Type Selection: LLMs tend to show bias toward certain

chart types, resulting in sub optimal performance in this area. How-
ever, in current research on natural language interfaces, visualization
recommendations are typically restricted to a narrow range of chart
types.

To solve the limitation, we enhance LLM performance by provid-
ing them with external knowledge, and we have selected Retrieval-
Augmented Generation (RAG) as the solution (C4). The principle
of RAG is to retrieve relevant background information related to
the input through a retrieval module and provide this context to the
generation module, thereby improving the accuracy and relevance
of the generated results. Our background knowledge contains exam-
ples of how visualization experts select chart types the knowledge
about different chart types. We select OpenAI Assistant to realize
RAG, which provides a Vector Store to save files and applies various
optimization methods (like query optimization, semantic searches
and re-ranking) to improve retrieval performances.

Then, we use the concept of recommendation score ranging from
0 to 100 to estimate whether one type of chart is suitable to solve the
question. The recommendation score is given by LLMs based on the
question and knowledge. If the question fits the definition of the chart
and falls within a specific strength interval, a higher recommendation
score is obtained. Conversely, if it is clearly mentioned in the corpus
that the chart is challenging in solving this type of problem, a lower
recommendation score will be obtained. Finally, charts with the
highest recommendation score will be selected.

Data Processing: We aim to filter relevant data and apply appro-
priate algorithms or models to process the data. We apply chain of
thought (COT) to process the data. First, LLMs generate a detailed
data processing plan which includes the algorithms and data process-
ing process. Algorithms and mathematical models include machine
learning algorithms such as dimensionality reduction, clustering,
and classification. Data processing includes normalization, outlier
handling, missing value handling, etc. The idea of code processing
will be listed in as much detail as possible to avoid errors. Specif-
ically, we will pay attention to time variables, which we require
LLMs to use a standard format to show them. Second, we gener-
ate the data processing code based on the code template and data
processing plan. The code template includes the necessary libraries,
specifies the format of the input and output, and provides fixed areas
for LLMs to fill. To ensure the executability of the code, LLMs can
only modify the code in a specific region.

Visualization Generation: Visualization is automatically gener-
ated based on the question, chart type and data. We choose Python to
generate visualization. Due to Python’s strengths in data processing,
we aim to maintain consistency across the various code generation
stages to prevent potential issues during data transfer. For visualiza-
tion libraries, we chose Altair and pyecharts for coding. Compared
to other libraries like Matplotlib, these two libraries offer standard-
ized code writing, are less prone to errors, and provide better support
for interactive user exploration.

Existing work has been able to achieve accurate generation of
single charts. In this work, we use lida [13] as our baseline, using
an identical template-based method for visualization generation.

4.4 Linking

Users are hard to get sufficient insights from multiple non-interacted
charts and now we aim to add linking and insights to these charts.

Linking: We incorporate linking interactions to enable users
to explore data more deeply (C5). Through linking, we connect
individual visualization charts to work together in addressing the
task.

First, a primary view is selected for user to interact with, and
the other views respond correspondingly to the user’s actions. The
primary view is selected based on the relation to the task [15], infor-
mation complexity [6] and logic relation between views [34]. We
hope the primary view to be task-relevant, informative and concise.

Second, we design interaction methods for the primary chart
based on the knowledge. For example, in a scatter plot, we may
implement a ”brush” tool to allow users to select a region of data,
while in a bar chart, we can design a ”click” function that provides
detailed information about a specific bar.

Third, we automatically generate linking interaction code accord-
ing to the example. These interactions not only enable users to
engage with individual charts but also allow for deeper data explo-
ration in a multi-view environment by linking the charts together,
enhancing the efficiency and effectiveness of the analysis.

After the process, users can interact freely and get real-time
feedback.

Reference Notes: Text plays a significant role in helping users
gain insight [2, 4]. In order to assist users in exploration and expand
their insights derived from our system, we lead LLMs to generate
reference notes that accompany the linked views. We mainly focuses
on three aspects:

(1) Answering the Central Question. At the heart of every data
visualization is a key question or set of questions we aim to ad-
dress. This ensures that the primary objective of the data analysis is
communicated.

(2) Interaction Guidance (C6). To ensure users fully understand
and utilize the interactive features provided by the system, we need
to provide clear operational guidance in our explanations.

(3) Extract stories behind data. We extract some insights that
can be obtained from single visualization chart or linked views,
including high-lighting trends, notable patterns, etc. We will also
infer the underlying reasons behind these insights to present data
stories.

Modification and Error Handling Process: In order to imple-
ment customization and improve the user experience, our system
needs to support modifications and error handling. We input the
code and the error information (or the comments made by users)
into LLMs to instruct them to regenerate the code.

4.5 Interface
We design an interface to accommodate our framework and the
system overview is presented in Figure 4. This section introduces
the basic functions and design philosophy of the system.

The system overview section displays the framework and compo-
nents of the entire system. As shown in Figure 4a, the control panel
determines the content displayed in the chat interface. We provide
a clear and concise method, allowing users to easily initiate new
conversations or browse through historical chat records. By clicking
the ”New Chat” button (Figure 4-a1), users can quickly start new
conversations. Meanwhile, selecting a specific chat record (Figure
4-a2) enables users to conveniently review past exchanges, thereby
enhancing the efficiency of information search and browsing.

The data display area (Figure 4b) is designed as an intuitive
interface for showing relevant data and information to the user. Once
a file is uploaded via the ”File Upload” button (Figure 4-c5), the
data will be displayed in this area. This design aims to help data
analysts become acquainted with the data and to facilitate easy data
viewing during system interaction, thus better understanding and
analyzing the information.

The chat interface (Figure 4c) is a key part of the system’s interac-
tion with the user. It allows users to select questions for decomposi-
tion (Figure 4-c1), view and interact with linked views (Figure 4-c2),
and obtain in-depth explanations (Figure 4-c3). Also, a dialogue
box (Figure 4-c4) is provided, enabling users to propose tasks and
suggest modifications at any stage. This allows the system to adapt
more flexibly to the needs of data analysts while fostering their deep
understanding of the issues.

Finally, the modification panel (Figure 4d) serves as a supple-
mentary part of the system, offering convenient references for users
unsure of how to modify data or views. This enhances the system’s

user-friendliness by providing intuitive modification suggestions and
guidance, helping data analysts more easily realize their intentions.

5 USAGE SCENARIOS

In this section, we use a usage scenario to illustrate the effectiveness
of the system.

In this usage scenario, we attempt to understand the factors af-
fecting house prices. We employ the house pricing dataset [5], an
EDA dataset from Kaggle, which includes over 60 factors that may
influence house pricing. It is difficult for data analysts to find the
most important variables in such a large-scale data set and make an
accurate analysis. Therefore, employing SmartMLVs to show the
different dimensions of the data and generate targeted interactive
visualizations can efficiently and effectively aid in understanding
the impact of various factors, allowing for interactive exploration of
context-specific sales strategies under different scenarios.

After inputting the question ”What are the factors influencing the
house pricing?” and the associated data into SmartMLVs, the system
breaks the task down into several questions (Figure 1a). However,
considering that the sale date is too detailed, we provide feedback
for modifications and receive the revised results. Taking into account
all the output questions from the system, we choose three of them.

The system soon returns the result (Figure 1b). Analyzing the plot
of house prices as a function of construction year reveals a general
upward trend, with the rate of increase accelerating in recent years.
Examining the change curve of the sales month indicates that house
prices peak in September, with a trough occurring from April to
June, showing no clear cyclical pattern. Additionally, the box plot of
quality versus home price demonstrates that higher-quality homes
tend to command higher prices, with the rate of increase appearing
to be approximately exponential.

To uncover additional insights, interactions were used to explore
the data further (Figure 1c). The reference note hypothesized that
houses built in recent years tend to sell for higher prices due to
superior quality. To investigate, the user filtered the data to include
only houses built from 2000 onwards (Figure 1-c1), prompting
the other charts to update in response to this interaction (Figure
1-c2). The analysis revealed that the comprehensive quality ratings
of houses constructed after 2000 were 4 and above, supporting
the conjecture proposed in the reference note. Additionally, the
cyclical trends of house prices by month exhibited different patterns.
Through this interactive exploration, users gained new insights and
a deeper understanding of how these factors influence house prices.

Building on the insights gained above, the user sought to explore
the associations between variables and investigate additional factors
that might influence house prices. To address these questions, the
system generated three additional charts (Figure 1d). From the
heatmap, it was observed that the correlation coefficient between
construction year and overall quality is approximately 0.5, indicating
a moderate correlation. Furthermore, several other potential factors
influencing house prices were identified through the analysis.

Overall, our system efficiently identified several factors influenc-
ing house prices (like built year, overall quality, living area, etc.),
provided possible explanations through interactions and reference
notes, and revealed associations between variables.

6 EVALUATION

Two evaluation experiments were carried out to evaluate our system.

6.1 Ablation Study

To validate various design choices of our Generation process, we
conducted an ablation study. We investigated the impacts of our
proposed RAG based chart type selection and COT based data pro-
cessing.

Table 1: Result of the ablation study. VG, CTS, DP refer to visualization
generation, chart type selection and data processing respectively. The
result proves the effectiveness of each module.

Model ACC (%)

VG (lida, baseline) 63.2
VG+CTS 64.4
VG+DP 68.9
VG+CTS+DP (Generation) 70.1

6.1.1 Experiment Setup
We are unable to find an authoritative dataset for natural lan-
guage generation of multiple linked views. However, the nvBench
dataset [27] provides a mapping of natural language to a single vi-
sual chart, accomplishing a task similar to the Generation module
in our framework. This dataset can be used to test the accuracy
of that component. Therefore, we employ the nvBench dataset to
conduct the ablation study. Tian et al. [42] constructed a dataset
based on nvBench for NLI, containing a subset of 1,918 ¡NL, VIS¿
pairs, focusing on generating visualizations from a single table. We
conduct our ablation studies on the test set which contains 378 cases.

In the ablation study, we removed the chart type selection module
(CTS) and data processing (DP) module and used the visualization
generation (VG) process, that is, lida [13], as our baseline, which
just gives LLMs a template for code generation. We then added the
chart type selection module and data processing module separately
on the baseline. Finally, we combined both of these modules to
update the scores.

6.1.2 Experiment Metrics
In the evaluation, we evaluated the accuracy of the Generation pro-
cess. We leveraged the match accuracy between the ground truth and
the results generated by our methods. We define the result as ’cor-
rect’ if the result is exactly the same as the ground truth, including
the selected data, chart type, sort type and data processing methods.
Our accuracy rate is defined as: ACC = C / T * 100% where C stands
for the number of correct results and T stands for the total number
of results.

6.1.3 Experiment Results
The result is shown in Table 1. The accuracy rate of the baseline
is 63.2%. Only with either the chart type selection module and
data processing module, the performance rise to 64.4% and 68.9%
respectively. When combining both of them, the accuracy rate
increases to 70.1%, superior that of the baseline by 6.9%.

To analyze the effectiveness of RAG based chart type selection,
we analyze the result generated by model ’VG+CTS’. It is surprising
to find that some chart types that are not contained in the ground truth
occur in our results, like sankey, word cloud and box plot, which
can answer the question more intuitively than bar chart (ground
truth). Despite their negative impacts on the accuracy rate, it is a
good phenomenon proving that our method can recommend correct
and diverse chart types. Therefore, though the accuracy rate does
not improve remarkably, we can also show the effectiveness of this
module.

We also validate COT based data processing process. Compared
to the baseline, the accuracy rate improves 5.7%. We analyze the
problems which are not solved by baseline and are solved by the
model ’VG+DP’. Data processing module performs well in the
following two aspects: 1.finding corresponding data columns and
2.using appropriate aggregation, filter and sort conditions, allowing
our system to handle some hard problems.

Our Generation process performs much better than the baseline.
However, it still encounters some problems when reading the data,
handling components and selecting chart types in the dataset. 18

cases do not generate results because we fail to load the dataset using
Pandas. 20 cases have problems handling components in the dataset,
like ’Timestamp(1989-01-01)’ which is recognized as a string in
Python. 75 cases do not select the same chart types as the ground
truth, but they do not influence users’ understanding.

6.2 User Study
We conducted a user study to show the effectiveness of our system.

6.2.1 Experiment Setup
Participants: We invited 32 participants (18 males and 14 females,
25 postgraduate students and 7 undergraduate students) to participate
in the user study. All the participants have data analysis experience
and have data analysis needs in their work. All of them were not
familiar with the dataset we use in the experiment before.

Procedure: Our user study contains two parts, a controlled exper-
iment and a free exploration process. Both experiments use GPT4
to support our system.

In the controlled experiment, we divided the participants ran-
domly into two groups with 16 participants each. Experiment group
members used our system to explore the data. Control group mem-
bers could use any data analysis tools, including but not limit to
GPT-4, Python and Excel. We used house pricing dataset to carry
out the experiment, which is the same dataset as the usage scenario.
We gave participants a task for exploration: What factors influence
house pricing and how these factors influence house pricing. Besides
the task, users were encouraged to find more data insights. Time for
exploration was limited to 20 minutes and users were interviewed
about the conclusion they reached and the basis for their conclusions.

In the free exploration process, all participants could use our
system to analyze their datasets. Then, a questionnaire and a review
were conducted.

Measurement: For controlled experiment, we evaluated the re-
sult based on the quality of insights. We evaluated the insights
from four perspectives: comprehensiveness, accuracy, depth and
solidity. Comprehensiveness and accuracy evaluate whether the
insights correctly and fully identify the factors influencing house
prices. Depth assesses the extent of the user’s understanding of how
specific factors impact house prices. Solidity examines whether the
user’s conclusions are well-supported by evidence. To assist the
evaluation process, we extracted answers to the question from the
EDA notebook as ground truth.

For free exploration, we designed a questionnaire to gather user
satisfaction levels with our system. Our questionnaire consisted of
8 questions, with 5 about the effectiveness of each component, 1
about the practicality of the framework and 2 about the usability of
our system. We used a 7-point Likert scale to collect their response.
Also, we prepared some questions for interview, including their
feelings about using our system, the scenarios when they prefer to
use our system and the pros and cons of our system.

In the whole process, we tested the time required to generate each
module to evaluate the efficiency of our system.

6.2.2 Result Analysis
The results of controlled experiment are listed in Figure 5. We used
mann-Whitney U test to judge the significance of the result. As is
shown in the figure, our system significantly outperforms the control
group in terms of depth and solidity. Examining the control group
results reveals that most users chose to use ChatGPT directly for data
analysis. While GPT provides answers by analyzing the relation-
ships between variables and house prices and highlighting the top
10 factors with the highest correlation coefficients, it merely lists the
variables without delving into the extent of their influence on house
prices or presenting visual results unless explicitly requested, which
still imposes a considerable analytical burden on the user. Users
relying on Python for analysis must select variables individually

for examination, and they often face the additional challenge of re-
solving repeated code errors. In contrast, SmartMLVs automatically
assist users by generating insights from multiple dimensions—such
as patterns, associations, trends, and anomalies—through linked
views and reference notes tailored to data decomposition tasks. Fur-
thermore, it provides supporting explanations, offering significant
assistance to data analysts in understanding and interpreting data.

Figure 5: Results of the user study. The experiment group outperforms
the control group significantly in depth and solidity. The p value
stands for significance level with *,**,*** stands for p¡.05, .01 and .005,
respectively.

During the free exploration process, participants utilized SmartM-
LVs to analyze datasets from diverse fields, including electricity,
movies, soccer, stocks, and more. Additionally, Figure 6 summa-
rizes the findings from the questionnaire survey. As is shown in the
figure, the average satisfaction rate for our system is 5.75, indicating
a generally favorable user perception. Particularly, users are highly
satisfied with chart type selection and reference notes. However,
users are not that satisfied with visualization charts generation be-
cause of its instability, which we will discuss in Section 7. When it
comes to usability, the majority of participants think our system is
easy to use and prefer to use our system.

Figure 6: Results from the subjective questionnaires. The stack bars
indicate feedback scores and the rightmost column shows Mean±STD.

The result of the efficiency evaluation is shown in Figure 7. When
using GPT4, the generation of multiple linked views takes approx-
imately 68 seconds on average. Analyzing the efficiency of each
module, we found that the majority of the time is spent on visualiza-
tion generation and interaction generation, which take an average of
23 seconds and 25 seconds, respectively.

Participants estimate our system from the following perspectives.
Saving time and effort. Our system eliminates the tedious work

of coding. All users who have utilized our system provided feed-
back indicating that our system is more efficient than manual data
processing. In the comparative study, one participant in the control
group first used ChatGPT to understand the data, but he thought

LLMs do not understand his data well, then he instructed LLMs to
generate data processing code. However, he encountered problems
of a coding error when using Python to analyze the data, prevent-
ing him from completing the task on time. Another control group
participant encountered a similar problem. Faced with the complex
dataset, he attempted to take into account as many factors as possible
in a limited time, but fails. He told us, the dataset is too large and it
requires a significant amount of time to understand each column. In
the free exploration stage, both of the participants used our system
to explore the house pricing dataset and evaluated our system to be
efficient. He told us that he prefers to use our system when he faces
an unfamiliar dataset, which can help him quickly know the data.

Deepen data understanding. Interactive linked views and ref-
erence notes allow for a more comprehensive and in-depth under-
standing of the task and data at hand. One participant uploaded a
football dataset and want to explore the impact of age on the foot-
ball players. Though he identified a negative correlation between
age and value, some anomalies point catch his attention. He notes
that some high-level players, despite being old, still maintain high
value. This is significant information. I may miss this detail if not
using this system, he further tells us. Another participant uploads a
dataset about market risk management and wants to find high-risk
business. Though our system does not solve his task because of
the complexity, our system stills generates linked views about the
relation between variables. He comments on our system, these charts
play an important role in the actual market management, they are all
valuable.

Figure 7: The efficiency of our method. It takes an average of 68
seconds to generate multiple linked views. The time distribution of
each module is listed.

7 DISCUSSION

In this section, we discuss the advantages and limitations of our
work. On this basis, we look forward to our future work.

Generalizability. Our work is generalizable for the reason that
our system can solve various problems proposed by users instead
of a specific task. Also, users can quickly understand the dataset
and obtain answers to their questions through our system. Our user
studies prove the flexibility and efficiency of our work. However,
our approach also has limitations in the following aspects:

(1) Data processing. In terms of the size of the dataset, since
our system operates by generating and executing code, there are
no inherent restrictions on the size of the data in the processing
phase. The main limitation is the amount of data that a visualization
library can support. In terms of the dimension, our method performs
well in the house pricing datasets (which have over 60 features) and
upper limit of the system needs more experimental verification. In
terms of the complexity of algorithms, our system can only handle
problems answerable from data or those can be solved by directly
using some encapsulated machine learning algorithms (like PCA
and linear regression), but it meets problems when it needs to design

the structure of deep learning models, and automatically execute
algorithms which requires training and validation. In the future, we
can enhance the ability to design deep learning frameworks for large
modes and develop frameworks that automate the training of deep
learning models, thereby improving data processing capabilities.

(2) Visualization composition. Although we achieve diversity
in chart selection as well as associations between views, we fail
to create composition between views or design complex visualiza-
tion charts. To address the problem, we need to extract patterns
of chart compositions [12] and analyze the correlations between
decomposed questions, trying to solve multiple problems in one
chart.

(3) Customization. In our work, we achieve customization by
giving the user a choice of question and by allowing the user to make
changes to the chart. However, there is a certain lag in this way,
and LLMs has a shallow understanding of some industry terms. In
future research, we can achieve better customization by fine-tuning
methods for a certain field.

The limitations brought by LLMs. Despite LLMs’ excellent
performance in natural language understanding and reasoning, we
encounter problems from the following aspects:

(1) Stability in code generation. The code generated by LLMs
may encounter issues, leading to failure in visualization generation or
interaction. Although we have addressed some potential problems in
data processing process (like time and splitting) and provided LLMs
with the opportunities to correct errors in error handling process,
LLMs may still experience hallucinations during execution, leading
to a poor user experience. Some state-of-the-art work have proposed
some methods to solve hallucination, like self reflection [20] and
knowledge distillation [29]. In the future, we may combine LLMs
and deep learning based methods to improve stability.

(2) Execution efficiency. In our experiment, we select GPT-4
to finish all the tasks. On average, a duration of 50 seconds is
required to generate a single chart and the generation of linked views
needs more time. The absence of real-time engagement or feedback
mechanisms exacerbates the waiting period, making it feel even
more tedious and laborious. It has been proven that models with
fewer parameters generate results more quickly, but this comes at the
cost of reduced quality [7]. Finding a balance between speed and the
quality of generated responses is a topic worth further investigation.
Besides, we can improve system efficiency with data caching [25]
and prefetching technologies [30].

The limitations of ablation study. In our evaluation, we utilized
the NVBench dataset, which is limited to testing the generation of
individual charts and cannot evaluate the performance of our entire
system. As a result, the necessity of decomposition and linking
components cannot be quantitatively measured. Moreover, this
dataset offers a limited selection of visualizations (only four types),
and most tasks involve simple data processing. This limitation is
insufficient to fully demonstrate the superiority of our method. In
the future, we look forward to collecting datasets related to linked
views from platforms like Tableau to establish benchmarks.

8 CONCLUSION

To conclude, we introduce SmartMLVs, a LLM-enhanced automatic
interactive multiple linked views generation system designed for
data analysts to comprehend data and gain insights. Our framework
enhances the ability of LLMs by appropriate prompt engineering
methods and injecting visual analytics domain knowledge, generates
interactive linked views through a three-step process, and involves
users into the generation and exploration process, allowing them
to have a deep understanding of the task and dataset. The usage
scenario and evaluation experiments prove the effectiveness and
expandability of our method.

ACKNOWLEDGMENTS

This work is supported by Natural Science Foundation of China
(NSFC No.62472099 and No.62202105).

REFERENCES

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] M. Alharbi and R. S. Laramee. Sos textvis: An extended survey of
surveys on text visualization. Computers, 8(1):17, 2019.

[3] N. Andrienko, G. Andrienko, G. Fuchs, A. Slingsby, C. Turkay, and
S. Wrobel. Visual analytics for data scientists. Springer, 2020.

[4] S. K. Badam, Z. Liu, and N. Elmqvist. Elastic documents: Cou-
pling text and tables through contextual visualizations for enhanced
document reading. IEEE transactions on visualization and computer
graphics, 25(1):661–671, 2018.

[5] F. Basysyar and G. Dwilestari. House price prediction using exploratory
data analysis and machine learning with feature selection. Acadlore
Trans. AI Mach. Learn, 1(1):11–21, 2022.

[6] R. Borgo, A. Abdul-Rahman, F. Mohamed, P. W. Grant, I. Reppa,
L. Floridi, and M. Chen. An empirical study on using visual embel-
lishments in visualization. IEEE Transactions on Visualization and
Computer Graphics, 18(12):2759–2768, 2012.

[7] T. B. Brown. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

[8] T. A. Caswell, M. Droettboom, A. Lee, E. Sales de Andrade, J. Hunter,
T. Hoffmann, E. Firing, J. Klymak, D. Stansby, N. Varoquaux, et al.
matplotlib/matplotlib: Rel: v3. 4.0. Zenodo, 2023.

[9] W. Chen, X. Ma, X. Wang, and W. W. Cohen. Program of thoughts
prompting: Disentangling computation from reasoning for numerical
reasoning tasks. arXiv preprint arXiv:2211.12588, 2022.

[10] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li,
X. Wang, M. Dehghani, S. Brahma, et al. Scaling instruction-finetuned
language models. arXiv preprint arXiv:2210.11416, 2022.

[11] A. Creswell, M. Shanahan, and I. Higgins. Selection-inference: Exploit-
ing large language models for interpretable logical reasoning. arXiv
preprint arXiv:2205.09712, 2022.

[12] D. Deng, Y. Wu, X. Shu, J. Wu, S. Fu, W. Cui, and Y. Wu. Visimages: A
fine-grained expert-annotated visualization dataset. IEEE Transactions
on Visualization and Computer Graphics, 29(7):3298–3311, 2022.

[13] V. Dibia. Lida: A tool for automatic generation of grammar-agnostic
visualizations and infographics using large language models. arXiv
preprint arXiv:2303.02927, 2023.

[14] J. Dill, R. Earnshaw, D. Kasik, J. Vince, and P. C. Wong. Expanding
the frontiers of visual analytics and visualization. Springer, 2012.

[15] M. Elias and A. Bezerianos. Exploration views: understanding dash-
board creation and customization for visualization novices. In Human-
Computer Interaction–INTERACT 2011: 13th IFIP TC 13 Interna-
tional Conference, Lisbon, Portugal, September 5-9, 2011, Proceedings,
Part IV 13, pp. 274–291. Springer, 2011.

[16] L. Gao, J. Lu, Z. Shao, Z. Lin, S. Yue, C. Leong, Y. Sun, R. J. Zauner,
Z. Wei, and S. Chen. Fine-tuned large language model for visualiza-
tion system: A study on self-regulated learning in education. IEEE
Transactions on Visualization and Computer Graphics, 31(1):514–524,
2025.

[17] W. Godoy, P. Valero-Lara, K. Teranishi, P. Balaprakash, and J. Vetter.
Evaluation of openai codex for hpc parallel programming models kernel
generation. In Proceedings of the 52nd International Conference on
Parallel Processing Workshops, pp. 136–144, 2023.

[18] Y. Guo, D. Shi, M. Guo, Y. Wu, N. Cao, and Q. Chen. Talk2data: A
natural language interface for exploratory visual analysis via question
decomposition. ACM Transactions on Interactive Intelligent Systems,
14(2):1–24, 2024.

[19] H. Hao, Y. Cui, Z. Wang, and Y.-S. Kim. Thirty-two years of ieee
vis: Authors, fields of study and citations. IEEE Transactions on
Visualization and Computer Graphics, 29(1):1016–1025, 2022.

[20] Z. Ji, T. Yu, Y. Xu, N. Lee, E. Ishii, and P. Fung. Towards mitigating
llm hallucination via self reflection. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 1827–1843, 2023.

[21] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: Interactive
visual specification of data transformation scripts. In Proceedings of
the sigchi conference on human factors in computing systems, pp.
3363–3372, 2011.

[22] G. Li, X. Wang, G. Aodeng, S. Zheng, Y. Zhang, C. Ou, S. Wang, and
C. H. Liu. Visualization generation with large language models: An
evaluation. arXiv preprint arXiv:2401.11255, 2024.

[23] Y. Li, Y. Qi, Y. Shi, Q. Chen, N. Cao, and S. Chen. Diverse interaction
recommendation for public users exploring multi-view visualization
using deep learning. IEEE transactions on visualization and computer
graphics, 29(1):95–105, 2022.

[24] C. Liu, Y. Han, R. Jiang, and X. Yuan. Advisor: Automatic visual-
ization answer for natural-language question on tabular data. In 2021
IEEE 14th Pacific Visualization Symposium (PacificVis), pp. 11–20,
2021.

[25] L. Liu, X. Yuan, N. Zhang, D. Chen, K. Yu, and A. Taherkordi. Joint
computation offloading and data caching in multi-access edge com-
puting enabled internet of vehicles. IEEE Transactions on Vehicular
Technology, 72(11):14939–14954, 2023.

[26] Z. Liu, J. Thompson, A. Wilson, M. Dontcheva, J. Delorey, S. Grigg,
B. Kerr, and J. Stasko. Data illustrator: Augmenting vector design
tools with lazy data binding for expressive visualization authoring.
In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, pp. 1–13, 2018.

[27] Y. Luo, J. Tang, and G. Li. nvbench: A large-scale synthesized dataset
for cross-domain natural language to visualization task, 2021.

[28] P. Maddigan and T. Susnjak. Chat2vis: Generating data visualisations
via natural language using chatgpt, codex and gpt-3 large language
models. IEEE Access, 2023.

[29] D. McDonald, R. Papadopoulos, and L. Benningfield. Reducing llm
hallucination using knowledge distillation: A case study with mistral
large and mmlu benchmark. Authorea Preprints, 2024.

[30] S. Mostofi, H. Falahati, N. Mahani, P. Lotfi-Kamran, and H. Sarbazi-
Azad. Snake: A variable-length chain-based prefetching for gpus. In
Proceedings of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 728–741, 2023.

[31] T. Munzner. Visualization analysis and design. CRC press, 2014.
[32] A. Narechania, A. Srinivasan, and J. Stasko. Nl4dv: A toolkit for

generating analytic specifications for data visualization from natural
language queries. IEEE Transactions on Visualization and Computer
Graphics, 27(2):369–379, 2021.

[33] C. North and B. Shneiderman. Snap-together visualization: can users
construct and operate coordinated visualizations? International Journal
of Human-Computer Studies, 53(5):715–739, 2000.

[34] J. C. Roberts. State of the art: Coordinated & multiple views in
exploratory visualization. In Fifth international conference on coordi-
nated and multiple views in exploratory visualization (CMV 2007), pp.
61–71. IEEE, 2007.

[35] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-
lite: A grammar of interactive graphics. IEEE transactions on visual-
ization and computer graphics, 23(1):341–350, 2017.

[36] M. Sedlmair, M. Meyer, and T. Munzner. Design study methodology:
Reflections from the trenches and the stacks. IEEE transactions on
visualization and computer graphics, 18(12):2431–2440, 2012.

[37] V. Setlur, M. Tory, and A. Djalali. Inferencing underspecified natural
language utterances in visual analysis. In Proceedings of the 24th
International Conference on Intelligent User Interfaces, IUI ’19, p.
40–51. Association for Computing Machinery, New York, NY, USA,
2019. doi: 10.1145/3301275.3302270

[38] Z. Shao, L. Shen, H. Li, Y. Shan, H. Qu, Y. Wang, and S. Chen. Narra-
tive player: Reviving data narratives with visuals. IEEE Transactions
on Visualization and Computer Graphics, pp. 1–15, 2025.

[39] L. Shen, E. Shen, Y. Luo, X. Yang, X. Hu, X. Zhang, Z. Tai, and
J. Wang. Towards natural language interfaces for data visualization: A
survey. IEEE Transactions on Visualization and Computer Graphics,
29(6):3121–3144, 2023.

[40] A. Srinivasan and J. Stasko. How to ask what to say?: Strategies for
evaluating natural language interfaces for data visualization. IEEE
Computer Graphics and Applications, 40(4):96–103, 2020.

[41] P. Studio. tuzhidian. http://tuzhidian.com/.

https://doi.org/10.1145/3301275.3302270
https://doi.org/10.1145/3301275.3302270
https://doi.org/10.1145/3301275.3302270
https://doi.org/10.1145/3301275.3302270
https://doi.org/10.1145/3301275.3302270
https://doi.org/10.1145/3301275.3302270
https://doi.org/10.1145/3301275.3302270
https://doi.org/10.1145/3301275.3302270
https://doi.org/10.1145/3301275.3302270
https://doi.org/10.1145/3301275.3302270
https://doi.org/10.1145/3301275.3302270
https://doi.org/10.1145/3301275.3302270

[42] Y. Tian, W. Cui, D. Deng, X. Yi, Y. Yang, H. Zhang, and Y. Wu.
Chartgpt: Leveraging llms to generate charts from abstract natural
language. arXiv preprint arXiv:2311.01920, 2023.

[43] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al. Llama:
Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

[44] J. VanderPlas, B. Granger, J. Heer, D. Moritz, K. Wongsuphasawat,
A. Satyanarayan, E. Lees, I. Timofeev, B. Welsh, and S. Sievert. Altair:
Interactive statistical visualizations for python. Journal of Open Source
Software, 3(32):1057, 2018. doi: 10.21105/joss.01057

[45] P.-P. Vázquez. Are llms ready for visualization? In 2024 IEEE 17th
Pacific Visualization Conference (PacificVis), pp. 343–352. IEEE, 2024.

[46] C. Wang, J. Thompson, and B. Lee. Data formulator: Ai-powered
concept-driven visualization authoring. IEEE Transactions on Visual-
ization and Computer Graphics, 2023.

[47] C. Wang, J. Thompson, and B. Lee. Data formulator: Ai-powered
concept-driven visualization authoring. IEEE Transactions on Visual-
ization and Computer Graphics, 30(1):1128–1138, 2024.

[48] L. Wang, W. Xu, Y. Lan, Z. Hu, Y. Lan, R. K.-W. Lee, and E.-P.
Lim. Plan-and-solve prompting: Improving zero-shot chain-of-thought
reasoning by large language models. arXiv preprint arXiv:2305.04091,
2023.

[49] X.-M. Wang, T.-Y. Zhang, Y.-X. Ma, J. Xia, and W. Chen. A survey of
visual analytic pipelines. Journal of Computer Science and Technology,
31:787–804, 2016.

[50] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi,
Q. Le, and D. Zhou. Chain-of-thought prompting elicits reasoning in
large language models, 2023.

[51] W. Zhang, Y. Shen, W. Lu, and Y. Zhuang. Data-copilot: Bridging
billions of data and humans with autonomous workflow. arXiv preprint
arXiv:2306.07209, 2023.

[52] Y. Zhao, J. Wang, L. Xiang, X. Zhang, Z. Guo, C. Turkay, Y. Zhang,
and S. Chen. Lightva: Lightweight visual analytics with llm agent-
based task planning and execution. IEEE Transactions on Visualization
and Computer Graphics, pp. 1–13, 2024.

[53] Y. Zhao, Y. Zhang, Y. Zhang, X. Zhao, J. Wang, Z. Shao, C. Turkay,
and S. Chen. Leva: Using large language models to enhance visual
analytics. IEEE Transactions on Visualization and Computer Graphics,
31(3):1830–1847, 2025.

[54] D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schu-
urmans, C. Cui, O. Bousquet, Q. Le, et al. Least-to-most prompting
enables complex reasoning in large language models. arXiv preprint
arXiv:2205.10625, 2022.

https://doi.org/10.21105/joss.01057
https://doi.org/10.21105/joss.01057
https://doi.org/10.21105/joss.01057
https://doi.org/10.21105/joss.01057
https://doi.org/10.21105/joss.01057
https://doi.org/10.21105/joss.01057
https://doi.org/10.21105/joss.01057
https://doi.org/10.21105/joss.01057
https://doi.org/10.21105/joss.01057

	Introduction
	Related Work
	Natural Language Interface
	Large Language Model for Task Decomposition
	Large Language Models for Visualization Generation

	Problem Formulation
	Tasks and Challenges
	Requirements
	External Knowledge

	SmartMLVs
	Framework
	Decomposition
	Generation
	Linking
	Interface

	Usage Scenarios
	Evaluation
	Ablation Study
	Experiment Setup
	Experiment Metrics
	Experiment Results

	User Study
	Experiment Setup
	Result Analysis

	Discussion
	Conclusion

